Structural dynamics is a
determinant of the
functional significance of
missense variants

Luca Ponzoni, Ivet Bahar

Department of Computational and Systems Biology,
School of Medicine



distribution

Classification of Single Amino acid Variants (SAVs)
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* hereditary (or germline) mutations = genetic disease

* acquired (or somatic) mutations - cancer
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The Evaluation of Tools Used to Predict the Impact of Missense Variants
Is Hindered by Two Types of Circularity
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VariBench
(20740)

Venn diagram showing the overlap between
five datasets used in this study.
VariBenchSelected (10266 variants) is the part of
VariBench not overlapping with HumVar nor
ExoVar. predictSNPSelected (16098 variants) is
the part of predictSNP not overlapping with
HumVar, ExoVar nor VariBench.
SwissVarSelected (12729 variants) is the part of
SwissVar that does not overlap with HumVar,

ExoVar, VariBench, nor predictSNP.
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predictSNP

(31974)
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Table 2. Purpose of Each Dataset, as Described by Dataset Creators

Dataset Purpose Positive control: damaging/deleterious/disease Negative control: neutral/benign/nondamaging/tolerated
causing/pathogenic

HumVar Mendelian disease variant “All disease-causing mutations from UniProtKB™ “Common human nsSNPs (MAF = 1%) without annotated
identification involvement in disease. . . treated as nondamaging™
ExoVar “Dataset composed of pathogenic “5,340 alleles with known effects on the molecular “4,752 rare (alternative/derived allele frequency <1%)
ns5NVs and nearly function causing human Mendelian diseases from the nsSNVs with at least one homozygous genotype for the
nonpathogenic rare nsSNVs™? UniProt database. . . positive control variants.” alternative/derived allele in the 1000 Genomes
“Pathogenic nsSNVs"P Project. .. negative control variants.” “Other rare
variants”?
VariBench “Variation datasets affecting “The pathogenic dataset of 19,335 missense mutations “This is the neutral dataset or nonsynonymous coding SNP
protein tolerance™ obtained from the PhenCode database downloaded in dataset comprising 21,170 human nonsynonymous
June 2009), [Dbases and from 18 individual LSDBs. coding SNPs with allele frequency 40.01 and chromosome
For this dataset, the variations along with the variant sample count 449 from the dbSNP database build 131.
position mappings to RefSeq protein (> = 99% match), This dataset was filtered for the disease-associated SNPs.
RefSeq mRNA, and RefSeq genomic sequences are The variant position mapping for this dataset was
available for download.™ extracted from dbSNP database.™
predictSNP “Benchmark dataset used for the Disease-causing and deleterious variants from SwissProt,  Neutral variants from SwissProt, HGMD, HumVar,
evaluation of. . . prediction tools HGMD, HumVar, Humsavar, dbSNP, PhenCode, Humsavar, dbSNP, PhenCode, IDbases, and 16 individual
and training of consensus IDbases, and 16 individual locus-specific databases. locus-specific databases.
classifier PredictSNP™
SwissVar “Comprehensive collection of “A variant is classified as disease when it is found in “A variant is classified as polymorphism if no disease
single amino acid patients and disease association is reported in association has been reported™
polymorphisms (SAPs) and literature. However, this classification is not a
diseases in the definitive assessment of pathogenicity™f
UniProtKB/Swiss-Prot
knowledgebase™
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Integrated Dataset

Dataset original size (2 SAVs with PDB % deleterious SAVs % same-site
structure (b) SAVs (©)

HumVar 40,389 10,973 83.9% 23.0%

(Adzhubei et al. 2010)

ExoVar 8,850 3,053 90.4 % 8.9%

(Li et al. 2013)

VariBenchSelected 10,266 3,286 82.3% 40.3 %

(Nair and Vihinen 2013)

predictSNPSelected 16,098 3,893 85.4 % 10.3 %

(Bendl et al. 2014)

SwissVarSelected 12,729 2,033 38.2% 2.4 %

(Mottaz et al. 2010)

Union of all - 20,413 78.4 % 18.6 %

datasets (@

(@) The original 5 datasets have been extracted from (13). The three “Selected” datasets have been cleared from SAVs already present in HumVar and ExoVar.

() Only the SAVs in proteins for which a PDB structure has been reported (according to Uniprot website) have been considered. In parenthesis, we show the number of SAVs used in our analysis, after excluding duplicates
and the cases where structural data were insufficient to compute all DYN features.

() percentage of SAVs for which at least one other variant at the same sequence position, but with different substitutions, is reported in the dataset. Such same-site variants (e.g. SI00A and S100R in given protein) are
distinguished by SEQ features only. For this reason, for training/testing of the DYN classifier, we retained only a single representative for each group of same-site variants.

(@ When combining the five datasets, duplicates have been eliminated.
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Increased accuracy by combining
SEQ + STR + DYN features
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Example: human a-L-iduronidase
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Coupling between global mechanics & catalysis
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Global mode shapes for 15 PDB structures. Residues forming the catalytic active sites are
marked as (0), inhibitors binding sites as (m), and both as (®).

Lee-Wei Yang & Bahar (2005) Structure 13, 893-904.
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Discriminatory power of individual features
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Re-Assessment of Pathogenicity of SAVs based On Dynamics

Home FAQs Download

This tool provides a prediction of pathogenicity for Single Amino acid Variants {(SAVs) by employing a Random Forest
classifier trained on both sequence-based and structural/dynamical features.

Option 1: Get predictions based on both
sequence-based and structural/dynamical features,

by uploading a: @

@® PolyPhen-2 output file (see instructions) No file chosen

Option 2: Alternatively, you can get predictions
based only on structural/dynamical features. ©

0 2.1:single query (e.g.. P17516 135 G E) |

i 2.2: batch query Choose File | Ma file chosen

email (optional): @ | | | Submit job |

ProDy

Protein Dynamics Analysis in Python

Contact. |ponzoni@pitt. edu
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